A network of constant interactions and communications #cybernetics

http://www.girlwonder.com/2010/09/a-network-of-constant-interactions-and-communications.html

ybernetics is a network of constant interactions and communications. Norbert Wiener (1894–1964) coined the term in 1948 from the Greek word for steersman. The term describes feedback — communication and control in systems—where a system obtains information on its progress, assesses the feedback, corrects its course and receives further feedback on the success of the transmission.

The genesis of cybernetics took place in the belly of ballistics and radar development during World War II. It took science and social science, then art and architecture by storm in the 1950s and 60s. While it fell out of favor in the 1970s (one possible reason is Vietnam and anti-technology sentiment, noted Andrew Pickering in a conversation we had a few years ago), it’s making a resurgence today — even turning up as a contemporary topic of study.

No wonder cybernetics proved so very attractive to so many fields: it described all systems in general because all systems ultimately were cybernetic, whether they were organic, mechanical, social or aesthetic. “Any organism is held together in this action by the possession of means for the acquisition, use, retention and transmission of information,"[1] Wiener wrote, making information the raison d’être of any organism, whether a living being, built circuit or societal construct. Cybernetics’ implications extended to engineering, computer science, biology, philosophy, anthropology, art, architecture and even the organization of society—the direction of Wiener’s second book on cybernetics, The Human Use of Human Beings. One key reason for the spread was because of the Macy Conferences (1946–53), a core group that included Wiener, W. Ross Ashby and Heinz von Foerster, Gregory Bateson, Margaret Mead, John von Neumann, and Buckminster Fuller, who gathered twice a year to explore the science of feedback in the social and biological sciences. The Macy Conference attendees sought to create models of the brain and of living organisms in logical systems, linguistic and information theory and with early computers.

A black box view of cybernetics has limitations, such as Wiener’s model: first-order cybernetics—the cybernetics of observed systems. The model becomes much more interesting with second-order cybernetics. It’s a sort of meta-cybernetics: the cybernetics of observing and participating with systems.[1] Consider a thermostat. On one hand, it is a system that monitors feedback in order to adjust the system to its desired setting. However, the thermostat does not exist in isolation: a human being sets it first.[2] First-order cybernetics assumes that a system is itself a discrete thing, unadulterated by interaction with it. Enter second-order cybernetics, which states any system can be changed by its observation. It studies that the way people construct models of systems, not just how the systems themselves function and learn from themselves. Since people are cybernetic models themselves, their observations are de facto second-order cybernetic.

Stafford Beer, a British cybernetician, applied cybernetics to business strategy Operational Research, “the science of proper control within any assembly that is treated as an organic whole."[2] In the early 1970s, he would work with the Allende government in Chile on in order to apply his concept as a mechanism for societal control.[3] It culminated in Project Cybersyn, with the Cybersyn Opsroom that you see here. (Eden Medina has a book coming out next year about Chile and Cybersyn, an expansion of her dissertation and her article, “Designing Freedom, Regulating a Nation: Socialist Cybernetics in Allende’s Chile."